ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Timothy D. Welch, August W. Cronenberg
Nuclear Science and Engineering | Volume 67 | Number 2 | August 1978 | Pages 263-269
Technical Note | doi.org/10.13182/NSE78-A15444
Articles are hosted by Taylor and Francis Online.
An important question to the liquid-metal fast breeder reactor safety program is a description of molten fuel dynamics, or, more specifically, whether fuel will freeze locally on structural material within the reactor core, preventing dispersal and nuclear shutdown, or in the extremeties of the fuel assembly. In this Note, a comparison is made between the solidification processes for single-component (i.e., UO2) and mixed-oxide fuel [i.e., (U, Pu)O2] by solving a Stefan-type problem for both pure and binary alloy solidification. Analytic calculations indicate that the freezing rate of the mixed fuel is not significantly different from that for the single-component system; thus, single-front analysis may be used for such mixed-oxide fuels in assessing safety questions associated with solidifacation phenomena.