ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
John W. Wilson, Stanley L. Lamkin
Nuclear Science and Engineering | Volume 57 | Number 4 | August 1975 | Pages 292-299
Technical Paper | doi.org/10.13182/NSE75-A15421
Articles are hosted by Taylor and Francis Online.
Perturbation theory, when applied to charged-particle transport, generates a series solution that requires a double quadrature per term. The continuity of higher-order terms leads to numerical evaluation of the series. The high rate of convergence of the series makes the method a practical tool for charged-particle transport problems. The coupling of the neutron component in the case of proton transport in tissue does not greatly alter the rate of convergence. The method holds promise for a practical high-energy proton transport theory.