ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
A. Z. Akcasu
Nuclear Science and Engineering | Volume 10 | Number 4 | August 1961 | Pages 337-345
doi.org/10.13182/NSE61-A15375
Articles are hosted by Taylor and Francis Online.
The dynamic behavior of boiling water reactors at high powers is investigated with a model in which the reactor system is represented by a second-order differential equation with a random damping factor and a random driving function. It is found that the mean square value of power becomes divergent (instability in the mean square sense) at a power level which is lower than the instability threshold usually predicted by the conventional transfer function analysis (instability in the mean). A method for predicting the mean square instability threshold during the initial power rise is also described, which consists of plotting the inverse of the root mean square of the power fluctuations as a function of the average power level, and determining the power at which the extrapolated curve intersects the x axis. The observed occurrence of oscillatory wave trains in the power fluctuations is also accounted for. Some of the results of the model are verified by analogue computer studies.