ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Kairos Power finalizes contract on HALEU for Hermes
Kairos Power has finalized a contract with the Department of Energy to receive high-assay low-enriched uranium (HALEU) from the agency for the company’s Hermes low-power demonstration reactor, currently under construction in Oak Ridge, Tenn.
In partnership with Los Alamos National Laboratory, Kairos intends to use the DOE-provided material to produce HALEU TRISO fuel pebbles for Hermes. The company views the Hermes test reactor and the fuel fabrication program as crucial to the eventual success of its power-producing Hermes 2 demonstration plant, also to be sited in Oak Ridge, and future commercial fluoride salt–cooled high-temperature reactors.
A. Z. Akcasu
Nuclear Science and Engineering | Volume 10 | Number 4 | August 1961 | Pages 337-345
doi.org/10.13182/NSE61-A15375
Articles are hosted by Taylor and Francis Online.
The dynamic behavior of boiling water reactors at high powers is investigated with a model in which the reactor system is represented by a second-order differential equation with a random damping factor and a random driving function. It is found that the mean square value of power becomes divergent (instability in the mean square sense) at a power level which is lower than the instability threshold usually predicted by the conventional transfer function analysis (instability in the mean). A method for predicting the mean square instability threshold during the initial power rise is also described, which consists of plotting the inverse of the root mean square of the power fluctuations as a function of the average power level, and determining the power at which the extrapolated curve intersects the x axis. The observed occurrence of oscillatory wave trains in the power fluctuations is also accounted for. Some of the results of the model are verified by analogue computer studies.