ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
A. Z. Akcasu
Nuclear Science and Engineering | Volume 10 | Number 4 | August 1961 | Pages 337-345
doi.org/10.13182/NSE61-A15375
Articles are hosted by Taylor and Francis Online.
The dynamic behavior of boiling water reactors at high powers is investigated with a model in which the reactor system is represented by a second-order differential equation with a random damping factor and a random driving function. It is found that the mean square value of power becomes divergent (instability in the mean square sense) at a power level which is lower than the instability threshold usually predicted by the conventional transfer function analysis (instability in the mean). A method for predicting the mean square instability threshold during the initial power rise is also described, which consists of plotting the inverse of the root mean square of the power fluctuations as a function of the average power level, and determining the power at which the extrapolated curve intersects the x axis. The observed occurrence of oscillatory wave trains in the power fluctuations is also accounted for. Some of the results of the model are verified by analogue computer studies.