ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
H. L. Dodds, Jr., H. C. Honeck, D. E. Hostetler
Nuclear Science and Engineering | Volume 62 | Number 4 | April 1977 | Pages 751-756
Technical Note | doi.org/10.13182/NSE77-A15218
Articles are hosted by Taylor and Francis Online.
A coarse-mesh finite difference method has been developed for multidimensional, mixed-lattice reactor diffusion calculations, both statics and kinetics, in hexagonal geometry. Results obtained with the coarse-mesh (CM) method have been compared with a conventional mesh-centered finite difference method and with experiment. The results of this comparison indicate that the accuracy of the CM method for highly heterogeneous (mixed) lattices using one point per hexagonal mesh element (“hex”) is about the same as the conventional method with six points per hex. Furthermore, the computing costs (i.e., central processor unit time and core storage requirements) of the CM method with one point per hex are about the same as the conventional method with one point per hex.