ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
D. R. Alexander, M. S. Krick
Nuclear Science and Engineering | Volume 62 | Number 4 | April 1977 | Pages 627-635
Technical Paper | doi.org/10.13182/NSE77-A15206
Articles are hosted by Taylor and Francis Online.
The total delayed neutron yield from 235U was calculated as a function of the energy of the neutron inducing fission. The calculations (based on fission data and fission systematics) extend from thermal to 15-MeV neutron energies. The energy-dependent delayed neutron calculations are generally consistent with experimental results from thermal to 14-MeV neutron energies. Delayed neutron yields per 104 fissions of 168.7 ± 16.7, 178.2 ± 17.2, and 88.9 ± 10.0 were obtained at thermal, fission-spectrum, and 15-MeV neutron energies, respectively. The energy dependence of the odd-even effect in the fission charge distribution was found to partially account for the near constant yield observed below 5-MeV neutron energy, as well as the rapid decrease in yield observed at the second-chance fission threshold.