ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
G. Noguere, P. Archier, C. De Saint Jean, B. Habert
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 164-179
Technical Paper | doi.org/10.13182/NSE11-72
Articles are hosted by Taylor and Francis Online.
This paper presents simple models developed to generate covariances between observable and latent variables. The methodology consists of using “variance penalty” terms as a measure of the contribution of the latent-variable uncertainties to the variance of a given calculated quantity z. This approach provides a useful understanding of how the observable and latent variables are related to each other and ensures the positive-definiteness of the covariance matrix. This work has been implemented in the nuclear data assimilation tool CONRAD. Performances of analytic and Monte Carlo models are illustrated with covariances calculated for neutron-induced capture reactions on stable xenon isotopes (124Xe, 126Xe, 128Xe, 129Xe, 130Xe, 132Xe, and 134Xe).