ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
D. W. Glasgow, F. O. Purser, H. Hogue, J. C. Clement, K. Stelzer, G. Mack, J. R. Boyce, D. H. Epperson, S. G. Buccino, P. W. Lisowski, S. G. Glendinning, E. G. Bilpuch, H. W. Newson, C. R. Gould
Nuclear Science and Engineering | Volume 61 | Number 4 | December 1976 | Pages 521-533
Technical Paper | doi.org/10.13182/NSE76-A14488
Articles are hosted by Taylor and Francis Online.
A fast-neutron time-of-flight spectrometer has been constructed for the purpose of measuring neutron differential cross sections of interest to the controlled thermonuclear reactor (CTR) program. The experimental facility provides the capability of measuring scattering cross sections of a few mb/sr to ∼5% absolute accuracy in the energy range from 6 to 15 MeV. Source neutrons are provided by the D(d,n)3He reaction. Scattered neutrons are detected at 28 angles between 25 and 160 deg in a massively shielded NE218 liquid scintillator located 4 m from the scattering sample. Absolute cross sections are obtained by normalizing to n-p scattering. Differential elastic and inelastic scattering cross sections are reported for 8.97-, 9.19-, 9.55-, 9.96-, 10.21-, 10.69-, 10.96-, 11.16-, 11.73-, 11.96-, 12.44-, 12.95-, 13.95-, 14.43-, and 14.93- MeV neutrons incident upon high-purity carbon. Monte Carlo simulation has been used to correct for finite source and sample effects. These data partially fill the 9- to 15-MeV gap in the carbon elastic and inelastic scattering data set required for the CTR program.