ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Adrienne M. LaFleur, William S. Charlton, Howard O. Menlove, Martyn T. Swinhoe
Nuclear Science and Engineering | Volume 171 | Number 3 | July 2012 | Pages 175-191
Technical Paper | doi.org/10.13182/NSE11-40
Articles are hosted by Taylor and Francis Online.
A new nondestructive assay technique called self-interrogation neutron resonance densitometry (SINRD) is currently being developed at Los Alamos National Laboratory to improve existing nuclear safeguards and material accountability measurements for light water reactor fuel assemblies. The viability of using SINRD to quantify the fissile content (235U and 239Pu) in pressurized water reactor 17 × 17 spent low-enriched uranium and mixed-oxide fuel assemblies in water was investigated via Monte Carlo N-particle extended transport code simulations. SINRD utilizes 244Cm spontaneous fission neutrons to self-interrogate the fuel pins. The amount of resonance absorption of these neutrons in the fuel can be quantified using 235U and 239Pu fission chambers placed adjacent to the assembly. The sensitivity of this technique is based on using the same fissile materials in the fission chambers as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n,f) reaction peaks in the fission chamber. SINRD requires calibration with a reference assembly of similar geometry. However, this densitometry method uses ratios of different fission chambers so that most systematic errors related to calibration and positioning cancel in the ratios.