ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
S. M. Ghiaasiaan, B. K. Kamboj, S. I. Abdel-Khalik
Nuclear Science and Engineering | Volume 117 | Number 1 | May 1994 | Pages 22-32
Technical Paper | doi.org/10.13182/NSE94-A13566
Articles are hosted by Taylor and Francis Online.
Gravity-driven countercurrent two-phase flow, in channels connected to a sealed tank at one end and open to the atmosphere at the other end, was analytically studied. This type of gravity-driven countercurrent two-phase flow can occur during the operation of passive safety coolant injection systems of advanced reactors. A mechanistic model was developed for the oscillating flow regime, which occurs in inclined channels with a side-entry configuration when the channel angle of inclination with respect to the horizontal plane is more than 10 deg and in channels with a bottom-entry channel-tank interphase. The model was shown to satisfactorily predict the experimental data.