ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Ely M. Gelbard, Albert G. Gu
Nuclear Science and Engineering | Volume 117 | Number 1 | May 1994 | Pages 1-9
Technical Paper | doi.org/10.13182/NSE94-A13564
Articles are hosted by Taylor and Francis Online.
The derivation of the standard expression for the Monte Carlo eigenvalue bias is reviewed. It is noted that the bias is due to the repeated normalization of the fission source by the eigenvalue. This normalization can be partially or completely eliminated, but when this is done, the variance in the eigenvalue may increase unacceptably. Thus, it seems impractical, in general, to eliminate the bias in this way. Next, the Brissenden-Garlick relation between eigenvalue bias and variance is rederived for nonanalog tracking and estimation. From this relation, it is shown that the eigenvalue bias under “normal conditions is smaller than the eigenvalue’s standard deviation. In this sense, the bias is not significant, so that it is not crucially important to eliminate or to estimate it.