ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Brian A. Lockwood, Mihai Anitescu
Nuclear Science and Engineering | Volume 170 | Number 2 | February 2012 | Pages 168-195
Technical Paper | doi.org/10.13182/NSE10-86
Articles are hosted by Taylor and Francis Online.
In this work, we investigate the issue of providing a statistical model for the response of a computer model-described nuclear engineering system, for use in uncertainty propagation. The motivation behind our approach is the need for providing an uncertainty assessment even in the circumstances where only a few samples are available. Building on our recent work in using a regression approach with derivative information for approximating the system response, we investigate the ability of a universal gradient-enhanced Kriging model to provide a means for inexpensive uncertainty quantification. The universal Kriging model can be viewed as a hybrid of polynomial regression and Gaussian process regression. For this model, the mean behavior of the surrogate is determined by a polynomial regression, and deviations from this mean are represented as a Gaussian process. Tests with explicit functions and nuclear engineering models show that the universal gradient-enhanced Kriging model provides a more accurate surrogate model than either regression or ordinary Kriging models. In addition, we investigate the ability of the Kriging model to provide error predictions and bounds for regression models.