ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Brian A. Lockwood, Mihai Anitescu
Nuclear Science and Engineering | Volume 170 | Number 2 | February 2012 | Pages 168-195
Technical Paper | doi.org/10.13182/NSE10-86
Articles are hosted by Taylor and Francis Online.
In this work, we investigate the issue of providing a statistical model for the response of a computer model-described nuclear engineering system, for use in uncertainty propagation. The motivation behind our approach is the need for providing an uncertainty assessment even in the circumstances where only a few samples are available. Building on our recent work in using a regression approach with derivative information for approximating the system response, we investigate the ability of a universal gradient-enhanced Kriging model to provide a means for inexpensive uncertainty quantification. The universal Kriging model can be viewed as a hybrid of polynomial regression and Gaussian process regression. For this model, the mean behavior of the surrogate is determined by a polynomial regression, and deviations from this mean are represented as a Gaussian process. Tests with explicit functions and nuclear engineering models show that the universal gradient-enhanced Kriging model provides a more accurate surrogate model than either regression or ordinary Kriging models. In addition, we investigate the ability of the Kriging model to provide error predictions and bounds for regression models.