ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Brian A. Lockwood, Mihai Anitescu
Nuclear Science and Engineering | Volume 170 | Number 2 | February 2012 | Pages 168-195
Technical Paper | doi.org/10.13182/NSE10-86
Articles are hosted by Taylor and Francis Online.
In this work, we investigate the issue of providing a statistical model for the response of a computer model-described nuclear engineering system, for use in uncertainty propagation. The motivation behind our approach is the need for providing an uncertainty assessment even in the circumstances where only a few samples are available. Building on our recent work in using a regression approach with derivative information for approximating the system response, we investigate the ability of a universal gradient-enhanced Kriging model to provide a means for inexpensive uncertainty quantification. The universal Kriging model can be viewed as a hybrid of polynomial regression and Gaussian process regression. For this model, the mean behavior of the surrogate is determined by a polynomial regression, and deviations from this mean are represented as a Gaussian process. Tests with explicit functions and nuclear engineering models show that the universal gradient-enhanced Kriging model provides a more accurate surrogate model than either regression or ordinary Kriging models. In addition, we investigate the ability of the Kriging model to provide error predictions and bounds for regression models.