ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NNSA furloughs 1,400 employees, pays contractors until end of month
After nearly three weeks of a government shutdown, the Department of Energy’s National Nuclear Security Administration has furloughed 1,400 employees and has retained 400 as essential employees who will continue working without pay.
Kaushik Chatterjee, Mohammad Modarres
Nuclear Science and Engineering | Volume 170 | Number 2 | February 2012 | Pages 136-150
Technical Paper | doi.org/10.13182/NSE11-27
Articles are hosted by Taylor and Francis Online.
In probabilistic safety assessments of pressurized water reactors, it is imperative to assess the potential and frequency of steam generator tube ruptures. Estimation of the frequency of steam generator tube ruptures has traditionally been based on historical occurrences, which are not applicable to new designs of steam generators with different geometries, material properties, degradation mechanisms, and thermal-hydraulic behaviors. This paper presents a new probabilistic mechanistic-based approach for estimating steam generator tube rupture frequency that is based on the principle that the failure of passive systems is governed by degradation or unfavorable conditions created through the underlying operating conditions and underlying mechanical, electrical, thermal, and chemical processes. This developed approach identifies, probabilistically models, and simulates potential degradations in new and existing steam generator designs to assess degradation versus time, until such degradation exceeds a known endurance limit. An example application of the proposed reliability prediction approach is presented for a new design of small modular reactor steam generators consisting of helically coiled tubes fabricated with advanced tube materials. This developed probabilistic physics-of-failure-based approach, when combined with probabilistic safety assessment techniques, can provide an effective tool for the evaluation of the safety and reliability of steam generators, particularly new steam generator designs used in advanced reactors.