ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Cory D. Ahrens
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 98-101
Technical Note | doi.org/10.13182/NSE10-69TN
Articles are hosted by Taylor and Francis Online.
Since the introduction of the angular segmentation or Sn method some 60 years ago, there have been many advances in the understanding of the method and many improvements to it. Indeed, the Sn method is now a widely used technique for deterministic solution of the transport equation. For three-dimensional (3-D) calculations, the method relies on numerical quadratures for the sphere, which integrate certain subspaces of spherical harmonics. The construction of such quadratures can be difficult. Here we report the development of new, highly efficient quadratures for the sphere that are invariant under the icosahedral rotation group. We compare the efficiency of the standard level-symmetric quadratures commonly used for 3-D Sn calculations and see that the new quadratures can be as much as 70% more efficient than the standard quadratures.