ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Thea Energy releases preconceptual plans for Helios fusion power plant
Fusion technology company Thea Energy announced this week that it has completed the preconceptual design of its fusion power plant, called Helios. According to the company, Helios is “the first stellarator fusion power plant architecture that is realistic to build and operate with hardware that is available today, and that is tolerant to the rigors of manufacturing, construction, long-term operation, and maintenance of a commercial device.”
Dmitriy Y. Anistratov, Vladimir Ya. Gol'din
Nuclear Science and Engineering | Volume 169 | Number 2 | October 2011 | Pages 111-132
Technical Paper | doi.org/10.13182/NSE10-64
Articles are hosted by Taylor and Francis Online.
The methods for solving k-eigenvalue problems for the multigroup neutron transport equation in one-dimensional slab geometry are presented. They are defined by means of multigroup and effective grey (one-group) low-order quasidiffusion (QD) equations. In this paper we formulate and study different variants of nonlinear QD iteration algorithms. These methods are analyzed on a set of test problems designed using C5G7 benchmark data. We present numerical results that demonstrate the performance of iteration schemes in different types of reactor physics problems. We consider tests that represent single-assembly and color-set calculations as well as a problem with elements of full-core computations involving a reflector zone.