ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
D. Rochman, A. J. Koning
Nuclear Science and Engineering | Volume 169 | Number 1 | September 2011 | Pages 68-80
Technical Paper | doi.org/10.13182/NSE10-66
Articles are hosted by Taylor and Francis Online.
This paper presents a novel approach to combine Monte Carlo optimization and nuclear data to produce an optimal adjusted nuclear data file. We first introduce the methodology, which is based on the so-called “Total Monte Carlo” and the TALYS system. As an original procedure, not only a single nuclear data file is produced for a given isotope but virtually an infinite number, defining probability distributions for each nuclear quantity. Then, each of these random nuclear data libraries is used in a series of benchmark calculations. With a goodness-of-fit estimator, a best evaluation for that benchmark set can be selected. To apply the proposed method, the neutron-induced reactions on 239Pu are chosen. More than 600 random files of 239Pu are presented, and each of them is tested with 120 criticality benchmarks. From this, the best performing random file is chosen and proposed as the optimum choice among the studied random set.