ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Xiao Gang
Nuclear Science and Engineering | Volume 169 | Number 1 | September 2011 | Pages 56-67
Technical Paper | doi.org/10.13182/NSE10-14
Articles are hosted by Taylor and Francis Online.
To obtain the probability distribution of the burst waiting time of neutron initiation in a multiplying assembly, a method that simulates the neutrons that induce a persistent fission chain is introduced in this paper. By this simulation method, neutron initiation experiments performed on Godiva-II and CFBR-II at a reactivity above prompt critical and performed on Godiva-I at a reactivity above delayed critical are studied. The probability density function of the burst waiting time of these experiments is calculated, and the results agree well with those of the experiments. Based on this simulation algorithm, the strength of the delayed neutron source changing with time is also calculated, which helps in the understanding of these neutron initiation experiments conducted on the pulse reactor.