ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
S. B. Degweker, Imre Pázsit
Nuclear Science and Engineering | Volume 168 | Number 3 | July 2011 | Pages 248-264
Technical Paper | doi.org/10.13182/NSE10-08
Articles are hosted by Taylor and Francis Online.
Invariant imbedding theory is an alternative formulation of particle transport theory. Until very recently, this theory was used only for deterministic calculations, i.e., for calculations of the first moment of the particle distribution. In a previous paper we set up a probability balance equation in the invariant imbedding approach. An equation was also obtained for the probability generating functional (pgfl) of reflected particles from which equations for the first- and second-order densities were derived. The approach was illustrated by a simple forward-backward scattering model with and without incorporating energy dependence to describe sputtering due to an external source of energetic particles on a medium. In this paper we extend these results to the case of a distributed internal source of particles. Among the possible applications, we discuss the problem of internal sputtering. We derive equations for the pgfl and the first- and second-order densities and show their connection with the external source problem. We treat the finite slab problem in addition to the semi-infinite slab geometry considered in our previous paper.