ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Browns Ferry’s reactors receive subsequent license renewals
The operating licenses for the three boiling water reactors at Browns Ferry nuclear power plant, in Athens, Ala., have each been renewed by the Nuclear Regulatory Commission for an additional 20 years. The reactors, operated by the Tennessee Valley Authority, are now licensed to operate until December 2053 for Unit 1, June 2054 for Unit 2, and July 2056 for Unit 3.
Rong Kong, Jerome Spanier
Nuclear Science and Engineering | Volume 168 | Number 3 | July 2011 | Pages 197-225
Technical Paper | Geometric Convergence of Adaptive Monte Carlo Algorithms for Radiative Transport Problems Based on Importance Sampling Methods | doi.org/10.13182/NSE10-29
Articles are hosted by Taylor and Francis Online.
Importance sampling is a very well-known variance-reducing technique used in Monte Carlo simulations of radiative transport. It involves a distortion of the physical (analog) transition probabilities with the goal of causing events of interest in the computation to occur more frequently than in the analog process. This distortion is then compensated by a corresponding alteration of the estimating random variable in order to remove any bias from the estimates of quantities of interest. In this paper, we construct several families of estimators based on importance sampling methods to solve general transport problems and prove that the adaptive application of each estimator produces geometric convergence of the approximate solution. We also present numerical results that illustrate important elements of the theory.