ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Rong Kong, Jerome Spanier
Nuclear Science and Engineering | Volume 168 | Number 3 | July 2011 | Pages 197-225
Technical Paper | Geometric Convergence of Adaptive Monte Carlo Algorithms for Radiative Transport Problems Based on Importance Sampling Methods | doi.org/10.13182/NSE10-29
Articles are hosted by Taylor and Francis Online.
Importance sampling is a very well-known variance-reducing technique used in Monte Carlo simulations of radiative transport. It involves a distortion of the physical (analog) transition probabilities with the goal of causing events of interest in the computation to occur more frequently than in the analog process. This distortion is then compensated by a corresponding alteration of the estimating random variable in order to remove any bias from the estimates of quantities of interest. In this paper, we construct several families of estimators based on importance sampling methods to solve general transport problems and prove that the adaptive application of each estimator produces geometric convergence of the approximate solution. We also present numerical results that illustrate important elements of the theory.