ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Akio Yamamoto, Tomohiro Endo, Hiroki Koike
Nuclear Science and Engineering | Volume 168 | Number 2 | June 2011 | Pages 75-92
Technical Paper | doi.org/10.13182/NSE10-50
Articles are hosted by Taylor and Francis Online.
The validity of effective cross section obtained by the conventional equivalence theory is discussed from the viewpoint of reaction rate preservation in a heterogeneous system. It is shown that the reaction rate is not preserved when the escape probability is expressed by a multiterm rational approximation, which is commonly used in light water reactor (LWR) analyses. A new derivation method for obtaining a multigroup effective cross section, which accurately reproduces the result of reference ultrafine group calculation, is proposed. The validity of the proposed method is confirmed through test calculations in various heterogeneous geometries, which represent typical LWR configurations. Because the implementation of the proposed method is very simple, it is useful for existing lattice physics codes that utilize the equivalence theory on the basis of two-term (or multiterm) rational approximation.