ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Charlotte Sandrin, Richard Sanchez, Florence Dolci
Nuclear Science and Engineering | Volume 168 | Number 1 | May 2011 | Pages 59-72
Technical Paper | doi.org/10.13182/NSE10-44
Articles are hosted by Taylor and Francis Online.
Today's reactor core calculations are done in diffusion with a few coarse groups and require the homogenization of the core assemblies as well as a correct representation of the reflector. In industrial applications a homogeneous reflector is often used with cross sections obtained from transport calculations and adjusted to fit in-core measurements. However, the need for better precision in the core diffusion calculations and the emergence of new reflector concepts, such as for the European Pressurized Reactor (EPR), require an increase in the number of coarse groups for novel loading patterns and a rethinking of how to define the equivalent reflector. In this work we analyze and extend current techniques for the reflector homogenization for core calculations. Following the adopted industrial methodology, we have perfected a technique for the determination of an equivalent homogenous reflector by implementing a Particle Swarm Optimization Algorithm and showed its limitations through the analysis of an academic slab reactor model and of a realistic two-dimensional representation of the EPR. We have compared the precision of the resulting core calculations to transport reference calculations as well as to diffusion calculations using a multigroup albedo boundary condition. We have also explored the use of current-preserving flux discontinuity coefficients at the core-reflector interface in conjunction with an equivalent reflector.