ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
John Loberg, Michael Österlund, Klaes-Håkan Bejmer, Jan Blomgren, Jesper Kierkegaard, Sten-Örjan Lindahl
Nuclear Science and Engineering | Volume 167 | Number 3 | March 2011 | Pages 221-229
Technical Paper | doi.org/10.13182/NSE09-105
Articles are hosted by Taylor and Francis Online.
Models of the neutron flux shape in a withdrawn control rod in a boiling water reactor (BWR) bottom reflector have been constructed from simulations with the Monte Carlo code MCNP. These neutron flux models are intended for determining absorber depletion and fast fluence accumulation for withdrawn control rods with nodal codes.So-called G-factors are created for coupling the neutron flux models to a conventional nodal code via the core bottom neutron flux.The neutron flux models and G-factors are created for three different neutron energies, and their dependence on various parameters such as blanket enrichments, Hf and B4C control rod absorber, and depletion and reflector geometry is investigated.The neutron flux models and G-factors are found to be very insensitive; the neutron flux models predict the simulated neutron flux in the withdrawn control rod from MCNP over a variety of reflector configurations with an error < 3.0%. This implies that the neutron flux models constructed in this paper are generally applicable for BWR reflectors and control rods not fundamentally deviating from the designs investigated in this paper.