ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Jinkai Wang, Warren D. Reece
Nuclear Science and Engineering | Volume 167 | Number 2 | February 2011 | Pages 154-164
Technical Paper | doi.org/10.13182/NSE09-94
Articles are hosted by Taylor and Francis Online.
The relative yields of delayed neutrons and the half-lives of their precursor nuclei are usually determined indirectly by the least-squares method based on the differences between experimental and fitted data. It is noted that the recommended values from ENDF/B-VII, ENDF/B-VI.8, JENDL-3.3, JEF-2.2, and JEFF-3.1 are significantly different. To evaluate these parameters, the measured data sets used in this research were simulated by the Monte Carlo method, and they were strict Poisson distributed data generated from Keepin's six-group data. Three different numerical methods (matrix inverse with singular value decomposition, Levenberg-Marquardt, and quasi Newton) with different regularization techniques were applied to estimate the parameter values. The fitted results were proven to be very unstable, and their calculated results were very different even for the same data set. Further investigation found ill-conditioned problems to be the reason for this instability. A better numerical method was suggested in this research.