ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. N. Hwang
Nuclear Science and Engineering | Volume 167 | Number 1 | January 2011 | Pages 1-39
Technical Paper | doi.org/10.13182/NSE10-004
Articles are hosted by Taylor and Francis Online.
The fundamental basis regarding treatment of unresolved resonances and the construction of probability tables and the relevant issues with their application to reactor physics is critically examined. A theoretical model using integral transform techniques is developed that provides a viable alternative to the stochastic-based “ladder” method widely used to construct probability tables. A brief review of the statistical theory for treating the unresolved resonances is presented, followed by a critical examination of these methods. Then a reference method for computing various probability distributions at 0 K is derived analytically for Breit-Wigner resonances. This reference model provides the analytical insight and conceptual basis for extension to the general case of arbitrary temperature. The generalization to arbitrary temperature is accomplished using the Chebyshev expansion while maintaining the general forms of the distributions. Results of extensive benchmark calculations to verify the viability of the proposed method are presented. Finally, there is discussion of the remaining challenges in application of this new analytical approach, in particular, the issue of its extension beyond the Breit-Wigner approximation.