ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leak-tightness test on deck for SRS mega unit
The Savannah River Site in South Carolina will begin a leak-tightness test to qualify the megavolume Saltstone Disposal Unit (SDU) 10 to store up to 33 million gallons of solidified, decontaminated salt solution produced at the site.
R. N. Hwang
Nuclear Science and Engineering | Volume 167 | Number 1 | January 2011 | Pages 1-39
Technical Paper | doi.org/10.13182/NSE10-004
Articles are hosted by Taylor and Francis Online.
The fundamental basis regarding treatment of unresolved resonances and the construction of probability tables and the relevant issues with their application to reactor physics is critically examined. A theoretical model using integral transform techniques is developed that provides a viable alternative to the stochastic-based “ladder” method widely used to construct probability tables. A brief review of the statistical theory for treating the unresolved resonances is presented, followed by a critical examination of these methods. Then a reference method for computing various probability distributions at 0 K is derived analytically for Breit-Wigner resonances. This reference model provides the analytical insight and conceptual basis for extension to the general case of arbitrary temperature. The generalization to arbitrary temperature is accomplished using the Chebyshev expansion while maintaining the general forms of the distributions. Results of extensive benchmark calculations to verify the viability of the proposed method are presented. Finally, there is discussion of the remaining challenges in application of this new analytical approach, in particular, the issue of its extension beyond the Breit-Wigner approximation.