ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Shay I. Heizler
Nuclear Science and Engineering | Volume 166 | Number 1 | September 2010 | Pages 17-35
Technical Paper | doi.org/10.13182/NSE09-77
Articles are hosted by Taylor and Francis Online.
The diffusion approximation for the Boltzmann (transport) equation suffers from several disadvantages. First, the diffusion approximation succeeds in describing the particle density only if it is isotropic, or close to isotropic. This feature causes the diffusion approximation to be quite accurate for highly isotropically scattering media but to yield poor agreement with the exact solution for the particle density in the case of nonisotropic behavior. To handle general media, the asymptotic diffusion approximation was first developed in the 1950s. The second disadvantage is that the parabolic nature of the diffusion equation predicts that particles will have an infinite velocity; particles at the tail of the distribution function will show up at infinite distance from a source in time t = 0+. The classical P1 approximation (which gives rise to the Telegrapher's equation) has a finite particle velocity but with the wrong value, namely, v/[square root of 3]. In this paper we develop a new approximation from the asymptotic solution of the time-dependent Boltzmann equation, which includes the correct eigenvalue of the asymptotic diffusion approximation and the (almost) correct time behavior (such as the particle velocity), for a general medium.