ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Kirill Fedorovich Raskach
Nuclear Science and Engineering | Volume 165 | Number 3 | July 2010 | Pages 320-330
Technical Paper | doi.org/10.13182/NSE09-47
Articles are hosted by Taylor and Francis Online.
The differential operator method is an effective Monte Carlo technique developed for calculating derivatives and perturbations. It has often been applied to eigenvalue problems. This paper extends applicability of the method to inhomogeneous problems with internal and external neutron sources. Two issues associated with these problems were considered. First of all, it was necessary to use a special technique that treats inhomogeneous problems within the framework of the neutron generation method with a constant number of neutrons per generation. This technique optimizes Monte Carlo calculations and eliminates difficulties that appear in the classical technique as the effective multiplication factor approaches unity. Furthermore, use of the technique facilitated solving the usual issue of the differential operator method associated with fission source, or more exactly total neutron source, perturbations because some modification of the approach recently proposed for eigenvalue problems could be employed. The proposed technique can be used for calculating derivatives of reaction rates with respect to neutron cross sections or material densities. Perturbations of external source and geometrical parameters were outside the scope of this work.