ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Aya Diab, Michael Corradini
Nuclear Science and Engineering | Volume 165 | Number 2 | June 2010 | Pages 180-199
Technical Paper | doi.org/10.13182/NSE08-18
Articles are hosted by Taylor and Francis Online.
Two-dimensional (2-D) experiments have been conducted to study the phenomenon of liquid entrainment associated with interfacial hydrodynamic instabilities, in particular, the Rayleigh-Taylor instability (RTI). The current work is part of an effort to understand the phenomenon of RTI associated with the rapid expansion of a superheated steam bubble that may occur in a CANDU reactor. The goal of the present work is to quantify the entrainment phenomenon associated with the RTI pertinent to the growth of a 2-D air bubble expanding adiabatically against a 2-D pool of water for a range of operating pressures. This experimental work is similar to that undertaken three decades ago at Massachusetts Institute of Technology, but the geometry has been modified to decrease the blowdown chute volume in order to reduce the experimental uncertainties. The entrainment phenomenon is characterized by means of two parameters that can be used to verify a semiempirical model developed in a parallel modeling effort. Specifically, the first parameter quantifies the width of the mixing zone, and the second parameter quantifies the volumetric ratio between the entrained liquid and the mixing zone. Comparing the experimental data with the model predictions is used to validate the developed model.