ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Health physicists respond to EO
Dewji
Bahadori
Caffrey
Three authorities on health physics have written a response to President Trump’s Executive Order 14300, “Ordering the Reform of the Nuclear Regulatory Commission.”
Published June 27 on Substack, “Radiation Protection Policy in a Nuclear Era: Recommendations from Health Physicists in Response to EO 14300” was written by Emily A. Caffrey, assistant professor and director of the Health Physics Program at the University of Alabama–Birmingham; Amir A. Bahadori, associate professor at Kansas State University; and Shaheen A. Dewji, assistant professor at the Georgia Institute of Technology.
Iskender Atilla Reyhancan, Ayse Durusoy
Nuclear Science and Engineering | Volume 174 | Number 2 | June 2013 | Pages 202-207
Technical Paper | doi.org/10.13182/NSE11-96
Articles are hosted by Taylor and Francis Online.
In this study, the activation cross sections were, first, measured for the 144Sm(n,)141mNd reaction at six different neutron energies from 13.57 to 14.83 MeV. The fast neutrons were produced by using a neutron generator, through the 3H(2H,n)4He reaction. The cyclic activation technique was used as the irradiation and counting method. Induced gamma activities were measured using a high-resolution gamma-ray spectrometer equipped with a high-purity germanium detector. In the cross-section measurements, corrections were made regarding the effects of gamma-ray attenuation, dead time, fluctuation of neutron flux, and low-energy neutrons. The measured cross sections were compared with the results of model calculations (TALYS code).