ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
D. P. Barry, G. Leinweber, R. C. Block, T. J. Donovan, Y. Danon, F. J. Saglime, A. M. Daskalakis, M. J. Rapp, R. M. Bahran
Nuclear Science and Engineering | Volume 174 | Number 2 | June 2013 | Pages 188-201
Technical Paper | doi.org/10.13182/NSE12-1
Articles are hosted by Taylor and Francis Online.
High-energy-neutron-scattering experiments for elemental zirconium were performed at the electron linear accelerator facility at Rensselaer Polytechnic Institute. The scattering experiments were performed in the energy region from 0.5 to 20 MeV using the time-of-flight technique. The scattering system is composed of an array of eight EJ301 liquid scintillator detectors coupled to photomultiplier tubes. The detector array collects data simultaneously at various angles. The raw signals from each detector were digitized and transferred to a personal computer hard drive for storage. The digitized data were postprocessed, and pulse-shape analysis was performed to determine whether the pulse was the result of a gamma ray or a neutron being detected. The experimental results were compared with Monte Carlo transport calculations that simulated the experiment. This comparison was a way to benchmark several nuclear data libraries used in the Monte Carlo code. Ratios of the calculated data to the experimental data (C/E values) are presented and used to compare the nuclear data libraries. Results show that the experimentally observed scattering cross section is smaller than the one used in the evaluated libraries at energies between 10 and 20 MeV. For all energies and angles, the investigated nuclear data libraries agree with the experimental data to within 9%. Overall, the JEFF-3.1 and JENDL-4.0 libraries provide the best match to the experimental data.