ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Illinois lifts moratorium on new large nuclear reactors
New power reactors of any size can be now be sited in the state of Illinois, thanks to legislation signed by Gov. J. B. Pritzker on January 8. The Clean and Reliable Grid Affordability Act (CRGA)—which Pritzker says is designed to lower energy costs for consumers, drive the development of new energy resources in the state, and strengthen the grid—lifts the moratorium on new, large nuclear reactors that Illinois enacted in the late 1980s.
M. R. Hartman, S. T. Keller, S. R. Reese, B. Robinson, J. Stevens, J. E. Matos, W. R. Marcum, T. S. Palmer, B. G. Woods
Nuclear Science and Engineering | Volume 174 | Number 2 | June 2013 | Pages 135-149
Technical Paper | doi.org/10.13182/NSE12-5
Articles are hosted by Taylor and Francis Online.
In support of the conversion of the Oregon State TRIGA Reactor (OSTR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel, a comprehensive neutronic analysis utilizing MCNP5 was performed on the HEU and LEU core configurations. The initial 1974 HEU core provided an opportunity for verification of the MCNP5 baseline model; all fuel elements in the initial core were congruent in geometry and material composition, having no burnup. In addition, a substantial database of core parameters was documented during the initial HEU core start-up. This verification study examined control rod worth, core excess reactivity, burnup, core power, power per element, temperature coefficient of reactivity, void coefficient of reactivity, moderator coefficient of reactivity, axial and radial power profiles, prompt-neutron lifetime, effective delayed-neutron fraction, power defect, and xenon poisoning.Fuel material composition and core loadings are presented. The excellent comparison between the numerical results and the experimental data of the initial HEU core established an objective, credible baseline model and methodology, which were then extended to the LEU core neutronic analysis. Comparison between the numerically calculated core physics values for the new LEU core and data collected during start-up provided a complete verification that the MCNP5 models developed for both the HEU and LEU cores were representative of the OSTR.