ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
NRC grants Clinton and Dresden license renewals
Three commercial power reactors across two Illinois nuclear power plants—Constellation’s Clinton and Dresden—have had their licenses renewed for 20 more years by the Nuclear Regulatory Commission.
Akio Yamamoto
Nuclear Science and Engineering | Volume 172 | Number 3 | November 2012 | Pages 259-267
Technical Paper | doi.org/10.13182/NSE11-88
Articles are hosted by Taylor and Francis Online.
An approach incorporating the discontinuity factor in transport calculations based on the integrodifferential transport equation, e.g., the discrete ordinates method, the method of characteristics, and the Monte Carlo method, is proposed. In the present approach, the effect of the discontinuity factor is incorporated by correcting cross sections (absorption, production, and scattering cross sections are divided by the discontinuity factor), and the anisotropic scattering cross sections of odd order are corrected with the discontinuity factor and the total cross section. The validity of the present method is confirmed through simple benchmark calculations using the method of characteristics. The present method would be a candidate for a mitigation method for errors associated with approximations, e.g., energy condensation, spatial homogenization, or coarse discretization, in transport calculations.