ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
DOE, NNSA open process to select energy suppliers for AI data centers
The Department of Energy’s Office of Environmental Management and Office of Science and the National Nuclear Security Administration issued requests for proposals last month, seeking plans from companies to build AI data centers at the Oak Ridge Reservation, the Savannah River Site, and Idaho National Laboratory.
Akio Yamamoto
Nuclear Science and Engineering | Volume 172 | Number 3 | November 2012 | Pages 259-267
Technical Paper | doi.org/10.13182/NSE11-88
Articles are hosted by Taylor and Francis Online.
An approach incorporating the discontinuity factor in transport calculations based on the integrodifferential transport equation, e.g., the discrete ordinates method, the method of characteristics, and the Monte Carlo method, is proposed. In the present approach, the effect of the discontinuity factor is incorporated by correcting cross sections (absorption, production, and scattering cross sections are divided by the discontinuity factor), and the anisotropic scattering cross sections of odd order are corrected with the discontinuity factor and the total cross section. The validity of the present method is confirmed through simple benchmark calculations using the method of characteristics. The present method would be a candidate for a mitigation method for errors associated with approximations, e.g., energy condensation, spatial homogenization, or coarse discretization, in transport calculations.