ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Kazuhiro Kobayashi, Osamu Terada, Hidenori Miura, Takumi Hayashi, Masataka Nishi
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 476-479
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A969
Articles are hosted by Taylor and Francis Online.
To obtain performance data of atmosphere detritiation system at the off normal events such as fire for the safety of ITER, the detritiation experiment was planned and performed at Tritium Process Laboratory (TPL) in Japan Atomic Energy Research Institute (JAERI) using a new scaled detritiation system for the oxidation performance test which can process gas flow rate of ~2.64 m3/hr in circulation through 2m3 tank. The detritiation system consists of two oxidation catalyst beds (473K and 773K) for converting hydrogen isotopes and tritiated methane in compounds to water vapor and a molecular sieve drying absorber for removing water vapor as the usual detritiation system. In this time, the performance of oxidation catalyst bed of the detritiation system for hydrogen and methane under existence of carbon monoxide or carbon dioxide which are produced in the fire was investigated.Basic performance of the detritiation system for hydrogen (1.9%) and methane (1.3%) in air was evaluated under maximum ventilation flow rate (2.64m3/h). Obtained oxidation efficiency was more than 99.99% for hydrogen in the catalyst bed at 473K and more than 99.9% for methane in the 773K one, respectively. It was confirmed that these performances were maintained even under carbon dioxide of up to 20% , carbon monoxide of up to 10% if sufficient oxygen remained in the process gas, and that the existence of carbon monoxide and carbon dioxide at the fire would not influence the performance of the oxidation catalyst bed in the detritiation system.