ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Ioana-R. Cristescu, J. Travis, Y. Iwai, K. Kobayashi, D. Murdoch
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 464-467
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A966
Articles are hosted by Taylor and Francis Online.
A model to simulate tritium behaviour after a release into a confined ventilated volume has been developed. The model assumes that for the investigated cases, tritium behaviour can be characterized by solving the dynamic equations of motion (the compressible Navier-Stokes equations) coupled with the classical k-[variant epsilon] turbulence model to simulate the ventilation in the room and mass diffusion for tritium spreading. The GASFLOW-II fluid dynamics field code, developed through a Los Alamos National Laboratory (LANL) - Forschungszentrum Karlsruhe co-operation, was used as the computational tool to solve the equations that describe the processes. The numerical results have been validated with experimental data collected on the experimental facility (Caisson) at the Tritium Process Laboratory (TPL) Japan. Additionally an investigation of the influence of the obstacles to the tritium distribution inside the Caisson is presented.