ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Ioana-R. Cristescu, J. Travis, Y. Iwai, K. Kobayashi, D. Murdoch
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 464-467
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A966
Articles are hosted by Taylor and Francis Online.
A model to simulate tritium behaviour after a release into a confined ventilated volume has been developed. The model assumes that for the investigated cases, tritium behaviour can be characterized by solving the dynamic equations of motion (the compressible Navier-Stokes equations) coupled with the classical k-[variant epsilon] turbulence model to simulate the ventilation in the room and mass diffusion for tritium spreading. The GASFLOW-II fluid dynamics field code, developed through a Los Alamos National Laboratory (LANL) - Forschungszentrum Karlsruhe co-operation, was used as the computational tool to solve the equations that describe the processes. The numerical results have been validated with experimental data collected on the experimental facility (Caisson) at the Tritium Process Laboratory (TPL) Japan. Additionally an investigation of the influence of the obstacles to the tritium distribution inside the Caisson is presented.