ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Hirofumi Nakamura, Takumi Hayashi, Kazuhiro Kobayashi, Masataka Nishi
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 452-455
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A963
Articles are hosted by Taylor and Francis Online.
Tritium behavior released in the ITER hot cell has been investigated numerically using a combined analytical methods of a tritium transport analysis in the multi-layer wall (concrete and epoxy paint) with the one dimensional diffusion model and a tritium concentration analysis in the hot cell with the complete mixing model by the ventilation. As the results, it is revealed that tritium concentration decay and permeation issues are not serious problem in a viewpoint of safety, since it is expected that tritium concentration in the hot cell decrease rapidly within several days just after removing the tritium release source, and tritium permeation through the epoxy painted concrete wall will be negligible as long as the averaged realistic diffusion coefficient is ensured in the concrete wall. It is also revealed that the epoxy paint on the concrete wall prevents the tritium inventory increase in the concrete wall greatly (two orders of magnitudes), but still, the inventory in the wall is estimated to reach about 0.1 PBq for 20 years operation.