ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
P. A. Davis, M. Balonov, A. Venter
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 423-430
Technical Paper | Tritium Science and Technology - Containment, Safety, and Environment | doi.org/10.13182/FST05-A958
Articles are hosted by Taylor and Francis Online.
A new model evaluation program, Environmental Modeling for Radiation Safety (EMRAS), was initiated by the International Atomic Energy Agency in September 2003. EMRAS includes a working group (WG) on modeling tritium and C-14 transfer through the environment to biota and man. The main objective of this WG is to develop and test models of the uptake, formation and translocation of organically bound tritium (OBT) in food crops, animals and aquatic systems. To the extent possible, the WG is carrying out its work by comparing model predictions with experimental data to identify the modeling approaches and assumptions that lead to the best agreement between predictions and observations. Results for scenarios involving a chronically contaminated aquatic ecosystem and short-term exposure of soybeans are presently being analyzed. In addition, calculations for scenarios involving chronically contaminated terrestrial food chains and hypothetical short-term releases are currently underway, and a pinetree scenario is being developed. The preparation of datasets on tritium dynamics in large animals and fish is being encouraged, since these are the areas of greatest uncertainty in OBT modeling. These activities will be discussed in this paper.