ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Industry Update—August 2025
Here is a recap of industry happenings from the recent past:
SMR service center targeted for Ontario
GE Vernova Hitachi Nuclear Energy has announced plans to invest as much as $50 million to establish a Canadian BWRX-300 Engineering and Service Center near Ontario Power Generation’s Darlington New Nuclear Project site. The Ontario government had previously approved the construction of the first of four BWRX-300 small modular reactors at the site. The center will provide engineering and technical services for the long-term operation and maintenance of the future fleet of SMRs in Ontario. It will also serve as a hub for innovation and training, knowledge sharing, supply chain engagement, and workforce development.
O. Ågren, V. E. Moiseenko, K. Noack, A. Hagnestål
Fusion Science and Technology | Volume 57 | Number 4 | May 2010 | Pages 326-334
Technical Paper | doi.org/10.13182/FST57-326
Articles are hosted by Taylor and Francis Online.
The straight field line mirror (SFLM) field with magnetic expanders beyond the confinement region is proposed as a compact device for transmutation of nuclear waste and power production. A design with reactor safety and a large fission-to-fusion energy multiplication is analyzed. Power production is predicted with a fusion Q = 0.15 and an electron temperature of [approximately]500 eV. A fusion power of 10 MW may be amplified to 1.5 GW of fission power in a compact hybrid mirror machine. In the SFLM proposal, quadrupolar coils provide stabilization of the interchange mode, radio-frequency heating is aimed to produce a hot sloshing ion plasma, and magnetic coils are computed with an emphasis on minimizing holes in the fission blanket through which fusion neutrons could escape. Neutron calculations for the fission mantle show that nearly all fusion neutrons penetrate into the fission mantle. A scenario to increase the electron temperature with a strong ambipolar potential suggests that an electron temperature exceeding 1 keV could be reached with a modest density depletion by two orders in the expander. Such a density depletion is consistent with stabilization of the drift cyclotron loss cone mode.