ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Two updated standards on criticality safety published
The American National Standards Institute (ANSI) recently approved two new American Nuclear Society standards covering different aspects of nuclear criticality safety (NCS).
Jochen Linke
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 293-302
Edge Physics and Plasma-Wall Interactions | Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics | doi.org/10.13182/FST10-A9420
Articles are hosted by Taylor and Francis Online.
The first wall and the divertor in present-day or next step thermonuclear fusion devices are exposed to intense fluxes of charged and neutral particles, in addition the plasma facing materials and components are subjected to radiation in a wide spectral range. These processes, in general referred to as `plasma wall interaction' will have strong influence on the plasma performance, and moreover, they have major impact on the degradation and on the lifetime of the plasma facing armour and the joining interface between the plasma facing material and the heat sink. Beside physical and chemical sputtering processes, thermal fatigue damage due to cyclic heat fluxes during normal operation and intense thermal shocks caused by severe thermal transients are of serious concern for the engineers which develop reliable wall components. In addition, the material and component degradation due to high fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires further extensive research activities. This paper represents a tutorial focussed on the development and characterization of plasma facing components for thermonuclear fusion devices.