ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Deep Fission raises $30M in financing
Since the Department of Energy kicked off a 10-company race with its Nuclear Reactor Pilot Program to bring test reactors on line by July 4, 2026, the industry has been waiting for new headlines proclaiming progress. Aalo Atomics broke ahead of the pack first by announcing last week that it had broken ground on its 50-MWe Aalo-X at Idaho National Laboratory.
Kazuhiro Itoh, Yoshiyuki Tsuji, Hideo Nakamura, Yutaka Kukita
Fusion Science and Technology | Volume 36 | Number 1 | July 1999 | Pages 69-84
Technical Paper | doi.org/10.13182/FST99-A93
Articles are hosted by Taylor and Francis Online.
Experiments are conducted on the initial growth of free surface waves on a high-speed (3.5 to 20 m/s) water jet flow that simulates related aspects of the liquid-lithium target in the International Fusion Materials Irradiation Facility. The waves are measured by using laser beam refraction at the water surface. The boundary layer at the nozzle exit and the recovery of the free surface velocity along the jet are also measured. The experimental results confirm that the nozzle-exit boundary layer has a significant influence on the initial growth of waves. With a turbulent boundary layer at the exit, the jet is covered by three-dimensional irregular waves from its beginning. With a laminar boundary layer, however, two-dimensional regular waves grow on an initially smooth water surface. For the latter case, the dominant frequency of the two-dimensional waves agrees well with the linear stability theory of Brennen.