ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
C. Poletiko, P. Trabuc, J. Durand, B. Tormos, L. Pignoly
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 194-199
Technical Paper | Tritium Science and Technology - Decontamination and Waste | doi.org/10.13182/FST05-A910
Articles are hosted by Taylor and Francis Online.
Due to its high diffusivity and different trapping phenomena, tritium is present in materials, such as steels which are in use in different parts of a nuclear power reactor or even in graphite which is present in fusion reactor.From waste management point of view, it is necessary to know as accurately as possible the tritium inventory in such materials before disposal. Moreover the knowledge of tritium species (HTO or HT. . .) is also a significant information in case of detritiation prior to storage, since countries regulation already limit tritium contents and releases. There are three different strategies for tritiated waste management. The first one consists in a storage with confinement packages the second one is waiting for radioactive decay. The third one consists in the application of detritiation processes.Studies have been performed to determine different processes that could be used for tritium removal. The aim of this paper was, to study, at laboratory scale, different procedures which may be used for stainless steels and carbon materials detritiation.Thermal detritiation kinetics till 1300 K has been studied under various atmospheres; full chemical dissolution of samples has also been performed both for steel and graphite, this to perfectly know the tritium content in such matrices. Finally a study of tritium content in steel layers has also been made, to learn about the tritium behaviour. All results are given, allowing the possibility to take a decision either for detritiation procedure or storage conditions.The main result is that thermal out-gassing enables higher than 95 % tritium extraction from the bulk at temperature in the range of 600K, without any material destruction under Hytec gas (Ar + 5% volume H2).