ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Yutai Katoh, Lance Snead
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 1045-1052
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9049
Articles are hosted by Taylor and Francis Online.
Limitations in operating conditions, primarily the steady-state operating temperature, of silicon carbide-based ceramics and composites for applications to structural and functional components in fusion blanket systems were critically examined based on the latest experimental results. Irradiation-induced high temperature swelling and irradiation creep were identified to be the likely factors limiting the upper temperature bound for structural applications, whereas irradiation-induced thermal conductivity degradation was identified to be the primary factor to limit the lower temperature bound when substantial heat flux is anticipated. For the application to flow channel inserts in liquid metal blankets, insulating properties will likely limit the upper temperature bound, whereas the lower temperature bound may be limited by swelling-induced secondary stress. Additionally, key scientific issues which need to be addressed for the better definition of design limitations were identified.