ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
P. Norajitra et al.
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 1013-1017
Divertors and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9043
Articles are hosted by Taylor and Francis Online.
A He-cooled divertor concept for DEMO has been pursued at Forschungszentrum Karlsruhe within the framework of the EU power plant conceptual study. The design goal is to achieve a DEMO-relevant heat flux of at least 10 MW/m2. The HEMJ (He-cooled modular divertor with multiple-jet cooling) was chosen as the reference concept. It employs small tiles made of tungsten, which are brazed to a thimble made of tungsten alloy W-1%La2O3. The W finger units are connected to the main structure of ODS Eurofer steel by means of a transition piece. The divertor modules are cooled by helium jets (10 MPa, 600°C) impinging onto the heated surface of the thimble. In cooperation with the Efremov Institute a combined helium loop & electron beam facility (60 kW, 27 keV) was built in St. Petersburg, Russia, for experimental verification of the design. Technological studies were performed on manufacturing of the W finger mock-ups. The results of high heat flux (HHF) tests till now confirm the divertor performance required. The knowledge gained from these experiments and some aspects on the design improvement are discussed in this contribution.