ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
P. Norajitra et al.
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 1013-1017
Divertors and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9043
Articles are hosted by Taylor and Francis Online.
A He-cooled divertor concept for DEMO has been pursued at Forschungszentrum Karlsruhe within the framework of the EU power plant conceptual study. The design goal is to achieve a DEMO-relevant heat flux of at least 10 MW/m2. The HEMJ (He-cooled modular divertor with multiple-jet cooling) was chosen as the reference concept. It employs small tiles made of tungsten, which are brazed to a thimble made of tungsten alloy W-1%La2O3. The W finger units are connected to the main structure of ODS Eurofer steel by means of a transition piece. The divertor modules are cooled by helium jets (10 MPa, 600°C) impinging onto the heated surface of the thimble. In cooperation with the Efremov Institute a combined helium loop & electron beam facility (60 kW, 27 keV) was built in St. Petersburg, Russia, for experimental verification of the design. Technological studies were performed on manufacturing of the W finger mock-ups. The results of high heat flux (HHF) tests till now confirm the divertor performance required. The knowledge gained from these experiments and some aspects on the design improvement are discussed in this contribution.