ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
V. Cocilovo et al.
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 989-993
Plasma Engineering | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9039
Articles are hosted by Taylor and Francis Online.
A new facility for fusion , the Fusion Advanced Studies Torus ( FAST ), has been proposed to prepare ITER scenarios and to investigate non linear dynamics of energetic particles, relevant for the understanding of burning plasmas behavior, using fast ions accelerated by heating and current drive systems. This new facility is considered an important tool also for the successful development of the demonstration/prototype reactor (DEMO), because the DEMO scenarios can take valuable advantage by a preparatory activity on devices smaller than ITER with sufficient flexibility and capable plasma conditions, before to testing them on ITER itself.In the regimes proposed for FAST the magnetic Toroidal Field (TF) ripple could lead to significant losses of high-energy particles, as also demonstrated in JET and JT60U experiments, so a careful analysis is necessary to achieve a low value of the TF ripple as far as compatible with the general load assembly design issues.Two different approaches to reduce TF ripple had been considered: Ferromagnetic Insets and Active Coils. For both solutions, different geometric parameters were investigated and the relative benefits and drawbacks evaluated.The analysis was carried out by 2D and 3D electromagnetic F.E.M. codes, dealing with different design solutions, chosen between those compatible with the relevant geometric dimensions of the plasma (i.e. the vacuum vessel), the access to the plasma and the divertor needs (i.e. the vacuum vessel ports dimensions) and other design constrains.A magnet consisting of 18 coils, each made of 14 copper plates suitably worked out in order to realize 3 turns in radial direction has been proposed. To limit within acceptable value the TF magnet ripple, the ferromagnetic insets solution has been chosen for FAST.The ripple on the plasma separatrix (near the equatorial port), has been so reduced from 3% to 0.3% .Due to the good results obtained also with Active Coils a study for applying the Active Coils concept also in ITER design was made, confirming even in this case the possibility to reduce considerably the TF ripple.