ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
M. Hara et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 144-147
Technical Paper | Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation | doi.org/10.13182/FST05-A899
Articles are hosted by Taylor and Francis Online.
A new kind of materials that can be applied to a gas chromatographic hydrogen isotope separation system was developed to reduce the amount of Pd-Pt alloy required for making the column and to improve the separation efficiency. Pd and Pt were deposited on -Al2O3 powder by using a barrel sputtering system. Prepared sample powder was characterized from surface morphology, element distributions on the surface, composition and crystallinity. The characterization showed that a uniform layer of Pd-Pt alloy with expected composition was formed on Al2O3 particles. The crystallinity, however, was poor, but improved after annealing at 1073 K for 2 hours. The hydrogen absorbing behavior was also improved by the annealing. A separation column was prepared from the annealed powder and was subjected to experiments on hydrogen isotope separation. The column of annealed powder gave considerably good separation efficiency around room temperature, in spite that only 0.35 g of Pd-Pt was used for the column. The amount of Pd-Pt alloy used here should be compared to previous results, where 1.5 g of Pd-Pt powder was required for high separation efficiency. The new material was quite effective to reduce the amount of Pd-Pt alloy without compromising the separation efficiency and can give further improvement.