ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
G. L. Kulcinski et al.
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 493-500
Experimental Facilities and Nonelectric Applications | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-21
Articles are hosted by Taylor and Francis Online.
For the past 15 years, the Inertial Electrostatic Confinement (IEC) fusion group at the University of Wisconsin-Madison has been conducting experiments to demonstrate that there can be many near term applications of fusion research long before the production of electricity in commercial fusion power plants. This research has concentrated on three fuel cycles: DD, D3He, and 3He3He. Some of the major accomplishments are listed below:a. The production of > 108 DD neutrons per second on a steady state basisb. The production of pulsed DD neutrons to over 1010 per second in 10Hz, 100 s bursts.c. The production of 14.7 MeV protons at > 108 per second (steady state) from the D3He reaction.d. Demonstrated the detection of the explosive C-4 with steady state DD neutrons.e. Demonstrated the detection of Highly Enriched U (HEU) with pulsed DD neutron fluxes.f. Production of the positron emission tomography (PET) isotopes, 94mTc and 13Nusing D3He protons.g. Production of the first measured 3He3He fusion reactions in an IEC device.h. Development of unique diagnostic techniques to measure the rate, spectrum, and location of fusion reactions in IEC devices.i. Use of an IEC device to study the behavior of materials at high temperature during charged particle bombardment.The accomplishments above were carried out in 3 devices HOMER, 3HeCTRE, and HELIOS that have operated up to 180 kV and meter currents of 65 mA. New applications are currently being explored and expanded roles for the IEC device will be described.