ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Prepare for the 2025 PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall. Now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Shinji Ebara, Yasutaka Harai, Takehiko Yokomine, Akihiko Shimizu
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 148-152
Tritium, Safety, and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8892
Articles are hosted by Taylor and Francis Online.
In solid breeder blanket design of fusion power plants, the ceramic breeder pebble bed plays a very important role. Its mechanical and thermal properties are necessary to design the blanket. In this study, thermomechancal properties of the bed such as effective thermal conductivity and stress-strain relation are investigated by means of numerical simulation. A discrete element manner is adopted in the simulation in order to clarify the influence of the individual particle properties upon the bulk behavior. As a result, the thermo-mechanical properties of pebble bed were well re-created in a computational space by means of the numerical model used in this study.