ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Y. Ueda, H. Kashiwagi, M. Fukumoto, Y. Ohtsuka, N. Yoshida
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 85-90
Divertor and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8881
Articles are hosted by Taylor and Francis Online.
Simultaneous irradiation effects of He on tungsten blistering with hydrogen and carbon mixed ion beam were investigated. It was found that only 0.1% addition of He ions to 1 keV H and C mixed ion beam (C:0.8-1.0%) reduced (at 473 K) or completely suppressed (at 653 K and 723 K) blister formation. In order to obtain more detailed result, two ion sources were used to irradiate tungsten with H and He ions with different energies. In the He energy of 0.6 keV (1.5 keV H&C),significant blistering was observed, while in the He energies of 1.0 keV and 1.5 keV, blister formation was suppressed. These results suggested that a He bubble layer reduced hydrogen diffusion through the layer. A He bubble size and a volume rate were about 1-2 nm and ~2% at 653 K, respectively. To evaluate T retention in the ITER tungsten wall, this effect should be included.