ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
L. Crosatti, J. B. Weathers, D. L. Sadowski, S. I. Abdel-Khalik, M. Yoda, R. Kruessmann, P. Norajitra
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 70-74
Divertor and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-30
Articles are hosted by Taylor and Francis Online.
A modular helium-cooled divertor design based on the multi-jet impingement cooling concept, known as the helium-cooled multi-jet (HEMJ), has been developed at the Karlsruhe Research Center (FZK). Thermal-hydraulic design simulations have shown that the HEMJ divertor can accommodate an incident heat flux of at least 10 MW/m2 with local heat transfer coefficients as high as ~50 kW/(m2K). However, there were no experimental data to validate the calculated thermal performance. An experimental study of the HEMJ divertor was therefore performed at Georgia Tech in collaboration with FZK. An experimental test module duplicating the prototypical HEMJ geometry and material properties was designed, fabricated, instrumented, and tested in an air flow loop at different incident heat flux values. The air flow rate was selected to cover a wide range of Reynolds numbers spanning that for the actual HEMJ, namely 2.1 × 104. The measured temperature distributions and local heat transfer coefficients estimated from these temperature distributions are both in good agreement with numerical predictions of the air-cooled test module performance calculated using FLUENT[registered] 6.2 for all test conditions. This research supports earlier numerical predictions of the thermal performance of the HEMJ design, and provides added confidence in the ability of the FLUENT[registered]CFD package to accurately predict the thermal performance of various gas-cooled plasma-facing components with complex geometry.