ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
New York takes two more steps toward nuclear
In 2025, New York Gov. Kathy Hochul was a vocal supporter of new nuclear development in the state. In October, she called on the New York Power Authority (NYPA)—the state’s public electric utility—to add 1 GW of new nuclear.
At the tail end of December, New York made more nuclear progress on three fronts. Hochul signed an agreement with Ontario Premier Doug Ford to collaborate on new nuclear development, Ontario Power Generation (OPG) signed a memorandum of understanding with the NYPA, and New York finalized its 2025 energy plan.
Kevin L. Sessions
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 91-96
Technical Paper | Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation | doi.org/10.13182/FST48-91
Articles are hosted by Taylor and Francis Online.
The Palladium Membrane Reactor (PMR) process was installed in the Tritium Facilities at the Savannah River Site to perform a production-scale demonstration for the recovery of tritium from tritiated water adsorbed on molecular sieve (zeolite). Unlike the current recovery process that utilizes magnesium, the PMR offers a means to process tritiated water in a more cost effective and environmentally friendly manner. The design and installation of the large-scale PMR process was part of a collaborative effort between the Savannah River Site and Los Alamos National Laboratory.The PMR process operated at the Savannah River Site between May 2001 and April 2003. During the initial phase of operation the PMR processed thirty-four kilograms of tritiated water from the Princeton Plasma Physics Laboratory. The water was processed in fifteen separate batches to yield approximately 34,400 liters (STP) of hydrogen isotopes. Each batch consisted of round-the-clock operations for approximately nine days. In April 2003 the reactor's palladium-silver membrane ruptured resulting in the shutdown of the PMR process. Reactor performance, process performance and operating experiences have been evaluated and documented. A performance comparison between PMR and current magnesium process is also documented.