ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
M. Tanaka et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 51-54
Technical Paper | Tritium Science and Technology - Tritium Processing, Transportation, and Storage | doi.org/10.13182/FST05-A878
Articles are hosted by Taylor and Francis Online.
For the purpose of the recovery of a hydrogen isotope exhausted from a fusion device and its application to a tritium monitor, hydrogen extraction properties using SrZr0.9Yb0.1O3- and CaZr0.9In0.1O3- and the effect of the electrode attachment method on the hydrogen extraction were evaluated under various atmospheres and temperatures. As a result, hydrogen could be extracted from mixed gases containing hydrogen, water vapor and methane. Furthermore, water vapor electrolysis for the tritium monitor was also evaluated under a wet atmosphere containing oxygen. From these results, it was revealed that a plated platinum electrode was suitable for mixed gases containing hydrogen, water vapor and methane, and that a porous pasted platinum electrode was suitable for water vapor electrolysis. From the findings obtained from the study of the hydrogen extraction properties, we described an optimum specification of the platinum electrode for a tritium recovery system and the number of proton-conducting ceramics for a tritium monitor.