ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Hodaka Osawa, Takehiro Tabata, Masami Ohnishi
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1270-1274
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST05-A863
Articles are hosted by Taylor and Francis Online.
An inertial electrostatic confinement (IEC) fusion device is possibly used for the neutron source that has the ability to produce the neutrons of 105-108/s by the glow discharge. It works more efficiently at the condition of the high voltage and the low pressure. It, however, is difficult to keep the continuous operation at the low-pressure because the glow discharge is apt to be unstable. We have made the three-dimensional Monte Carlo PIC code including atomic processes to investigate the glow discharge. The study reveals the spatial position where the ionization occurs and numerically reproduces the discharge called 'star mode'.