ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
B. R. Christensen, A. R. Raffray, M. S. Tillack
Fusion Science and Technology | Volume 47 | Number 4 | May 2005 | Pages 1180-1186
Technical Paper | Fusion Energy - Inertial Fusion Technology | doi.org/10.13182/FST05-A847
Articles are hosted by Taylor and Francis Online.
During injection, inertial fusion energy (IFE) direct drive targets are subjected to heating from energy exchange with the background gas and radiation from the reactor wall. This thermal loading could cause phase change (vaporization and/or melting) of the deuterium-tritium (DT). In the past, it was assumed that any phase change would result in a violation of the stringent smoothness and symmetry requirements imposed on the target. This work summarizes the results from a one-dimensional finite difference model that was created to simulate the coupled thermal and mechanical response of a direct drive target to an imposed heat flux.The objective of this work is to investigate methods of increasing the thermal robustness of targets.